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Abstract

We investigated the use of electronic equalization (EE) in
dispersion-limited systems when considering different modulation
formats. We demonstrated that EE strongly improves standard NRZ
performance, whereas it has a limited effect on Duobinary and
DPSK modulation formats.

Pros

• EE represents a low-cost solution for system affected by linear
effects such as CD and PMD only.

• Furthermore, it almost doubles the maximum reachable distance
(a reduction of about 750 ps/nm was observed) when a
standard NRZ system is considered

Cons

• It does not represent the optimum solution for these effects 
(since the photodiode makes the system not linear)

• It does not improve the performance (it reduces the amount of
CD by 250 ps/nm only) of a dispersion-limited system when
advanced modulation formats (such as DPSK and optical DB)
are considered.

Motivation

• Chromatic Dispersion (CD) & Polarization Mode Dispersion (PMD)
still represent important limiting (linear) effects for an optical
communications system (particularly, when we consider a metro
optical network scenario).

• EE may be seen as a simple & cheap way to reduce their impact.

• Moreover, EE can be used to reduce other system non-idealities.

System & Method

1. The simulated system is affected by ASE-noise and CD only.

2. The EE (made up by a FFE) is placed after the photodiode and
the electrical filter, with the following structure
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and characterized by the Ci coefficients, the number of taps, and
the delay between each tap.

3. The last two parameters were determined by obtaining the best
trade-off between system complexity & EE performance.

4. The Ci coefficients have been optimized by maximizing the Q-
factor, defined as

QdB= 20·log10[erfc-1(2·BER)]

5. The results are presented as contour plots of the Q-factor vs.
OSNR & CD.
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Contour plots of QdB @ 17 dB (i.e. BER ~ 10-9) for all the modulation formats studied.
We can clearly see the great benefit due to EE on the standard NRZ, and the negligible
advantage of using EE when DB or DPSK format are considered.
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