System Impact Of Fiber Parametric Gain in long-Haul Optical links

A. Carena, V. Curri, R. Gaudino, P. Poggiolini and S. Benedetto

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy Dipartimento di Elettronica, Politecnico di Torino, E-mail: [surname]@polito.it, Fax +39.11.5644099.

Outline

- Introduction.
- The Transfer Matrix formalism developed to analyze the Parametric Gain (PG).
- Effects of Parametric Gain on ASE noise
- Sideband Instability, a Parametric Gain related effect in periodical links.
- Effects of dispersion management on Parametric Gain.
- Optimization of dispersion map to reduce the Parametric Gain system impact.
- Conclusions.

Introduction

- PG is caused by the interaction of fiber nonlinearities with dispersion.
- PG induces a transfer of optical power from the signal to the ASE noise, in both dispersion regions
- PG effects Anomalous dispersion region \Downarrow
- \Rightarrow Noise Enhancement

Modulation Instability

Normal dispersion region

- Noise Enhancement
- Periodical structures are affected by Sideband Instability
- Dispersion map influences PG characteristics

Analytical Formalism (I)

Phasor Plane

Analyzed signal

$$U(z,T) = \left[\sqrt{P_0} + a(z,T)\right] e^{\left[-\alpha z + j(\omega_0 T - \Phi_{NL})\right]}$$

PG linearized equation

$$\frac{\partial a}{\partial z} = j \frac{1}{2} \beta_2 \frac{\partial^2 a}{\partial T^2} - j \gamma P_0 e^{(-2\alpha z)} \left(a + a^* \right)$$

Noise components

$$a_r(z,t) = \Re\{a(z,T)\}$$

$$a_i(z,t) = \mathcal{I}m\left\{a(z,T)\right\}$$

Analytical Formalism (II)

The solution has the following Transfer Matrix form:

$$\begin{bmatrix} A_r(z,\Omega) \\ A_i(z,\Omega) \end{bmatrix} = \begin{bmatrix} T_{11}(z,\Omega) & T_{12}(z,\Omega) \\ T_{21}(z,\Omega) & T_{22}(z,\Omega) \end{bmatrix} = \begin{bmatrix} A_r(0,\Omega) \\ A_i(0,\Omega) \end{bmatrix}$$

where the T_{ij} 's are expressed using Hankel's functions

Noise Gain Matrix after the action of PG. Using the spectral theory for multi-dimensional noise a, we obtain the

$$\underline{\underline{G}}(z,\Omega) = \begin{bmatrix} |T_{11}|^2 + |T_{12}|^2 & T_{11}T_{21} + T_{12}T_{22} \\ T_{11}T_{21} + T_{12}T_{22} & |T_{21}|^2 + |T_{22}|^2 \end{bmatrix} = \begin{bmatrix} G_{rr}(z,\Omega) & G_{ri}(z,\Omega) \\ G_{ri}(z,\Omega) & G_{ii}(z,\Omega) \end{bmatrix}$$

³rd edition, McGraw-Hill International Editions, New York, 1991. ^aA. Papoulis, Probability, Random Variables, and Stochastic Processes, p. 329,

Effects of Parametric Gain on ASE noise

Input noise components

Output - Normal Dispersion

Signal In-Phase Quadrature noise noise freq. Quadrature

Output - Anomalous Dispersion

Letters, vol. 9, n. 4, pp. 535-537, Apr. 1997. Reference: A. Carena, V. Curri, R. Gaudino, P. Poggiolini New theoretical results on fiber Parametric Gain and its effects on ASE noise, IEEE Photonics Technology

OPTSIM - Optical System Simulator

- Time-domain simulator.
- It is based on a split-step algorithm.
- A dual polarization fiber model is considered to include all polarization related phenomena
- It takes into account attenuation, dispersion, birefringence and PMD.
- Non-linear Kerr effect is considered, too.
- Joint linear-nonlinear effects are accurately evaluated.

Amplified Link, DS Fiber, L=3,000 km

EDFA # 2

EDFA#N

RX

NF = 5 dBNF = 5 dB

Parameters: CW power: 0 dBm, Fiber loss:

NF = 5 dB

 $\alpha = 0.22 \text{ dB/km}$, Fiber nonlinearity: $\gamma = 2 \text{ W}^{-1} \text{km}^{-1}$

Noise gain L=3,000 km D=+1.6 ps/nm/km

Simulated (dashed) and analytical (solid) in-phase and quadrature ASE noise gain spectra. Anomalous dispersion.

Noise gain L=3,000 km D=-1.6 ps/nm/km

Simulated (dashed) and analytical (solid) in-phase and quadrature ASE noise gain spectra. Normal dispersion.

Analytical ASE noise gain spectra with (dashed) and without (solid) birefringence. Normal dispersion.

Optical Communications Group - Politecnico di Torino - Italy

 $\alpha = 0.22 \text{ dB/km}$, Fiber nonlinearity: $\gamma = 2 \text{ W}^{-1} \text{km}^{-1}$

Prevalent Anomalous Dispersion L=6,000 km

Prevalent Normal Dispersion L=6,000 km

Analitycal Evaluation of Q-parameter

Optical Filter Photodetector Electric Filter

Fabry-Perot filter

Bw = 0.5 nm

Bw = 0.8 Rb GHz

Ideal device Bessel filter $E(t) = \left| \sqrt{P_{ric} + a_r(t) + ja_i(t)} \right| e^{j\varphi}$ $\mu_1 - \mu_0$ $\sigma_1 + \sigma_0$

- analytically evaluated For transmitted "1"'s PG effects on ASE noise are
- For transmitted "0"'s linear propagation of ASE noise is assumed.
- Distorsion of the signal is neglected.

Q vs. Power -L=6,000 km $R_b=10$ Gbit, ∞

Max Distance vs. Peak Power - Anomalous Dispersion

Conclusions

- enhancement due to parametric gain has been presented. An analytical tool to evaluate the nonlinear noise
- PG modifies noise spectra in both dispersion regions.
- Signal intensity and fiber dispersion determine the phenomenon characteristics.
- Dispersion map and power budget must be carefully designed to reduce the impact of PG.
- Considering the noise impact only, a longer distance can be reached increasing the distance between DCF spans

The authors would like to thank: