

Coherent Reflective PON architecture: can it be made compatible with TWDM-PON?

S. Straullu

ISMB, Istituto Superiore Mario Boella, Torino, Italy

- F. Forghieri CISCO Photonics, Monza, Italy
- G. Bosco, V. Ferrero, <u>R. Gaudino</u> Politecnico di Torino, Torino, Italy roberto.gaudino@polito.it

🍪 OPTCOM

Acknowledments

This work was supported by CISCO Systems within an SRA contract

and partially by the Italian Ministry of University and Research through ROAD-NGN project (PRIN2010-2011)

The authors would like to thank Fastweb for allowing access to their Turin dark fiber metro network.

Outline of the presentation

- An "one-minute" review of the recent ITU-T decision on adopting TWDM-PON for NG-PON2
- Another "one-minute" review on our previous works on self-coherent reflective PON architecture

- Self-coherent reflective PON architecture and TWDM-PON
- Demonstration of upstream burst-mode operation in reflective PON with up to 35dB ODN power budget

The recent FSAN decision on TWDM-PON

Is this the end of the reflective PON idea??

TWDM-PON key features

▶ 4 wavelengths per direction, 100 GHz spacing

- Upgreadable to 8 wavelengths
- TDMA on each of the 4 wavelengths
 - Each lambdas is treated as an independent XGPON
- Splitter-based PON
 - No AWG in the ODN
 - ODN power budgets will be the same as GPON and XGPON, thus also including class C (32dB) and likely C+ (35 dB)
 - The TX/RX power budget requirements is actually even higher than the class, due to the additional optical filters required to handle WDM at the ONU and OLT

FSAN TWDM-PON architecture

Recently defined by FSAN, now being processed by ITU, it will become ITU-T G.989.1 "<u>40-Gigabit-capable</u> passive optical networks (NG-PON2)"

Picture taken

from:

Yuanqiu Luo, Senior Member, IEEE, Xiaoping Zhou, Frank Effenberger, Senior Member, IEEE, Xuejin Yan, Senior Member, IEEE, Guikai Peng, Yinbo Qian, and Yiran Ma

Can reflective PON still be applied in such scenario?

(At least) three issues should be addressed:

- 1. Stick with the splitter-based architecture (i.e. no AWG in the ODN)
- 2. US transmission should allow high ODN loss
 - Treated in details in some of our previous works
- 3. Make US TDMA possible even on reflective PON
 Our new work and focus of this presentation

Reflective PON

- In the architecture above, the upstream wavelength grid is generated at the central office
 - Its accuracy is completely set by the OLT
 - ONU should lock its two optical filters on already existing wavelengths

In the longer term, this may allow DWDM using many closely spaced lambdas

Achieving high ODN losses in reflective PONs

Introducing <u>self-coherent</u> detection on the upstream reflectively-modulated signals

Self-coherent reflective PON

Proposed architecture

10

Experimental results: RSOA as modulator 1.25 Gbit/s upstream Installed metropolitan fiber testbed

ECOC 2012 posteadline paper Th3D.6

Optimization of self-coherent reflective PON to achieve a new record 42 dB ODN power budget after 100 km at 1.25 Gbps

S. Straullu⁽²⁾, S. Abrate⁽²⁾, F. Forghieri⁽³⁾, V. Ferrero⁽¹⁾ and R. Gaudino⁽¹⁾

⁽¹⁾ Politecnico di Torino, C.so Duca degli Abruzzi 24 – 10129 Torino, Italy, roberto.gaudino@polito.it
 ⁽²⁾ ISMB, Istituto Superiore Mario Boella, Via P.C. Boggio 61 – 10138 Torino
 ⁽³⁾ CISCO Photonics, Via Philips 12, 20059, Monza, Milan, Italy

Our new results

Upgrade to upstream burst mode operation

Upgrade of the upstream bit rate to 2.5 Gbps per wavelength (as in ITU-T G.989.1 TWDM-PON)

Burst mode, self-coherent reflective PON

- The recipe's ingredients:
- 1. Burst-mode TX (using RSOA or other reflective modulators)
- 2. Coherent burst mode detection

New structure for the ONU

SOA + R-EAM

Semiconductor optical amplifier (SOA)

- <u>Amplification</u> (20 dB per single pass for 90mA bias current)
- <u>Gating on the packets (2-3 ns raising time)</u>

Reflective Electro Absorption Modulator

Modulation bandwidth up to 6-7 GHz

Experimental setup

Coherent burst mode receiver

OPTCOM

LMS (training)

The first <u>127 bits</u> in each bursts are used for synch and for an LMS equalizer algorithm in training mode

LMS (tracking)

After the first 127 bits, the LMS algorithm is switched to "decision directed" to elaborate the payload of the burst

Experiments used an off-line processing approach.

To obtain stable BER values, we estimate and average it over a large number of packets (approx. 1800 packets for each BER estimate)

Optimization of DSP coefficients for burst-mode

OPTCOM

BER vs. number of FIR filter taps and "speed" of the LMS adaptive equalizer

Results for a single ONU and different lengths

BER vs. ODN loss, single ONU

18

Results for a two interfering ONUs

BER vs. ODN loss, two ONU's, 25 ns guard time

19

Ok, let's summarize...

Self-coherent reflective PON

We showed that self-coherent reflective PON:

Allows for high ODN-loss

- > Even 35dB, as required by class C+, can be achieved
- Can be made burst mode for TDMA
- Wavelength accuracy is set by the central office
 - No tunable lasers needed at ONU
 - Only tunable filters locked to incoming CW wavelengths needed at ONU
- This solution seems compatible with TWDM-PON, and easily scalable to DWDM with many lambdas

Envisioning mixed solution

OPTCOM

An available high ODN loss (>35dB) can open innovative mixed solutions, such as:

Thank you for your attention!

Coherent Reflective PON architecture: can it be made compatible with TWDM-PON?

S. Straullu

ISMB, Istituto Superiore Mario Boella, Torino, Italy

- F. Forghieri CISCO Photonics, Monza, Italy
- G. Bosco, V. Ferrero, <u>R. Gaudino</u> Politecnico di Torino, Torino, Italy roberto.gaudino@polito.it

