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il context

» People have been talking about physical-layer-aware
management-and-control of optical-networks, for quite some time

» Now people are also looking at real-time physical-layer-aware
management and control

» where “real-time” means assessing a whole network
in a fraction of a second...

» ...to do on-the-fly network optimization, fault recovery, etc...

» How do you achieve physical-layer-aware real-time management
and control ?

» You first n&€&d a non-linearity model... >

» ...and then you make it fast
» you also need to get all the linear stuff right...
but that’s a story for another day !




it the NLI models

» There are several non-linear interference (NLI) models, such as
» time-domain
» GN/EGN
» pulse collision
» logarithmic perturbation
» ... many others

» However NONE of them is real-time in their ‘native form’,
because they include integrals that need to be solved numerically

» We need arapproximate) CFM (Closed-Form Model) that
removes all the lyregrals

accuracy ??



T e generality requirements

» On the WDM COMB: the CFM must support any mix of
» channel symbol rates
» frequency spacings
» modulation-formats
» launch powers
» change of neighboring WDM channels at each node

» On the LINK: the CFM must support
» any mix of fiber type and span lengths
» dispersion and dispersion derivative
» frequency dependent loss
» different amplifier NF and frequency response
» presence of equalizers (GFFs)
» Inter-Channel Stimulated Raman Scattering, ISRS (for C+L-band)
» Raman amplification




o older and newer CFMs
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» A few years ago, we derived a rather general CFM from the GN-model:

» [2] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri, “The GN model of fiber non-linear
propagation and its applications,’ J. of Lightw.Technol., vol. 32, no. 4, pp. 694-721, Feb. 2014.

» However, not all the features on the previous slide were supported

» About a year ago, two papers started from [2] and filled in the missing requirements:

» [3] D. Semrau, R. I. Killey, P. Bayvel, ‘A Closed-Form Approximation of the Gaussian Noise Model in the Presence of

Inter-Channel Stimlllatpd Raman Scattering ’ nanar arXiva 1202 07040 Ang 23rd 7018

< » [4] P. Poggiolini, ‘A generalized GN-model closed-form formula,’ paper arXiv:1810.06545v2, Sept. 24th 2018. _-=

» The two/papers proposed similar formulas, though not identical, with similar capabilities

» This CFM [4] is general enough ...
» but... is it fast enough... ???
... is it accurate enough ... ??? [ again, it is an approximation ]




e, the “CFM”
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Uil the “CFM”
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dsco’  complexity

» the complex appearance is misleading

» this CFM requires only about 5 ms

» to evauate all channels of a C-band
fully-populated system, at the link end...

» ...using a laptop and interpreted Matlab

» So, it is real time

» ...but what about accuracy...?



wui what about accuracy ?

» To test the accuracy of the CFM, we compared it with the EGN -model...

» ...and we did it over
8500 highly diversified C-band system scenarios
» 6250 systems with 100% load
» 2250 systems with partial random load (average 50%)

» Why so many...?
» We thought it was necessary to guarantee reliability for practical use
» AFAWK, no such extensive and diversified validation has been attempted so far...

» But there is also another reason... (see later)

* the full-fledged, numerically-integrated EGN-model



cISco. 8500 systems random generation

» Each channel of the C-band WDM comb was chosen randomly as

» format:
» PM-QAM4/8/16/ 32/ 64/ 128 / 256
» PM-Gaussian with MI equivalent to any of the above QAM systems

» symbol rate:
» 32, 64, 96, 128 GBaud

» with spectral slot 43.5, 87.5, 131.25, 175 GHz, respectively
» roll-off: between 0.05 and 0.25

» 6,250 systems 100% load, 2250 systems partial load (average 50%)

» Each span of the link has randomly chosen
» fiber type: SMF, E-LEAF, TWC
» length: uniform between 80 and 120 km
» dispersion: slope was accounted for

» Performance predictions testing was performed on either the
» lowest frequency channel (f. - 2.5 THz)
» center channel (f.)
» highest frequency channel (f. + 2.5 THz)




cisco. example of PM-QAM fully-loaded test system
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il what performance indicator ?

We use as performance indicator the system “non-linear” OSNR for the “channel
under test” (CUT):

OSNR = Four

ASE + I:)NLI

We calculated it
- using the CFM
- using the numerically-integrated EGN-model

and compared the two results: OSNRdCEM _ OSNR?ZN

The comparison was performed for each of the 8500 systems at maximum reach
» found as where the normalized GMI of the CUT is down to 87% of entropy

Launch power was optimized for all channels into each span but then...
...each channel’s power was scrambled randomly to within +30% of optimum
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ecn’ CFM error vs. EGN
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ecn’ CFM error vs. EGN

SOPTCOM
OSNR{, —OSNRE,

lowest frequency channel
I I I

c
% mean: -0.44 dB
3 0.04 - std dev: 0.26 dB 7
Z peak error: 1.04 dB » The mean error is about
g 002r i -0.45 dB
o
a 0 _— | ‘

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 > The Std dev iS not too

center frequency channel large, about 0.3 dB

'.‘% mean: -0.48 dB
© 0.04 - std dev: 0.25 dB 7 .
__g: peak error: 1.03 dB } The peak error 1s
5 0.02| i however rather large,
S over 1 dB
& 0 | | ‘

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

highest frequency channel > The h1ghe§t-frequency

c . ' ' ' ' ' ' ' channel histogram seems
f mean: -0.40 dB more us read OUt”
3 0.04 - std dev: 0.32 dB 7 p .
2 peak error: 1.08 dB - more on this later
3 i
©
Ee)
2
o L |

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

OSNR estimation error, dB



» Can we do better ?...

» ... and how ???

» We leveraged the “big-data” test-set (the 8500 scenarios)
to find a simple closed-form “machine-learning” correction

» This is the other reason why the test set was generated so
large...



b the CFM
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eihs the CFM with ML
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“machine learning” factors
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fees the machine-learning factors
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» These machine-learning factors hinge on a few system parameters:
» the CUT symbol rate R ;
» the channel format EGN-model constant @
» the accumulated dispersion for each channel at the start of each span

(k)
IB 2 acc n, ch Z IB 2 nch pan

» It then requires “machine-learning” 18 coefficients a,...dg
» A standard MSE minimization algorithm was used



ecn’ CFM vs. EGN
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ecn’ CFM vs. EGN
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een’ CFM with ML vs. EGN
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een’ CFM with ML vs. EGN

«=0PTCOM
OSNRZ  —OSNR®
CFM EGN
lowest frequency channel
g I I I I I
E 0.15 mean: -0.44 dB mean: -0.02 dB i
3 std dev: 0.26 dB std dev: 0.07 dB
2 01F peak error: 1.04 dB peak error: 0.62 dB -
E
M -
0
2
o | !
04 06 there are
{3 l. 13
center frequency channel outliers
c T T T T T T T T
o 0.15 - mean: -0.48 dB mean: -0.01 dB |
3 ' std dev: 0.25 dB std dev: 0.05 dB
2 01F peak error: 1.03 dB peak error: 0.36 dB .
E
M -
Q2
2
o | |
0.4 0.6
highest frequency channel
T T T T T T T T
0.15 - mean: -0.40 dB mean: 0.09 dB |
' std dev: 0.32 dB std dev: 0.14 dB
01+ peak error: 1.08 dB peak error: 0.91 dB -

probability per bin

1.2 -1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6
OSNR estimation error, dB



een’ CFM with ML vs. EGN
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b CEM with ML
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“machine learning” factors
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il CFM with ML and CC
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il CC vs. no CC
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B il split-step simulation test
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» This far, the CFM was compared to EGN

» As a critical double-check, we decided to compare it
with full C-band split-step simulations

» We used 300 out of the 8500 test cases

» (full C-band split-step simulations take substantial CPU time!)



een’ best CFM vs. split-step
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dul conclusion
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» We aimed at providing a fully closed-form NLI model (CFM) that could:

» handle very general system scenarios tha“k

» allow real-time full-system computation (<< 1s) ‘
» be as accurate as the EGN-model you ®

» We generalized some previously available GN-model closed-form approximations

» We then leveraged a very large test-set of 8,500 system scenarios to perform
“machine-learning” improvements

» The validation over the large test-set shows that our CFM is very accurate and
reliable and closely matches the EGN model (as long as D>1)

» We also performed a successful test of the CFM vs. full C-band simulations
» The CFM allows all-channel performance estimation in <bms

» We therefore believe this could be an effective tool for real-time physical-layer-
awareness in the management and control of optical networks

you can download this presentation now
from www.optcom.polito.it



