System impact of EDFA gain fluctuation in WDM optical packet networks

R. Gaudino, A. Carena and V. Ferrero

Optical Communications Group - Politecnico di Torino - Italy

- Today optical networks are all based on continuous data stream transmission (SONET/SDH, Gigabit Ethernet): the optical layer does not handle data packets
- Future true all-optical packet networks will handle data packet at optical level: no power is transmitted on empty slots
- Fast signal power transient at the input of EDFA cause time dependent saturation effects generating significant output power fluctuations

EDFA dynamic behaviour

Fast modulation (bit) 2.5 Gbit/s

Fast modulation is not "seen" by the population inversion. Indeed, slow modulation is "followed" by the inversion, resulting in gain modulation.

Slow modulation (packet) 1µs

Packetized transmission

Packetized transmission using non controlled EDFAs: dynamic gain variation strongly affect the signal and the system performance.

- A strong CW signal is added to the WDM signals carrying packetized traffic: it will be called locking signal
- The locking signal power must be high enough in order to saturate the EDFA
- The aggregate power of all WDM signals must be small with respect to the locking signal power
- WDM signals will experience a small signal gain, without dynamic fluctuations, around the bias point fixed by the locking signal

Packetized transmission with gain locking

Packetized transmission with gain locked EDFAs. The dynamic gain fluctuation is negligible: system performance is not affected.

Measuring the impact: a new parameter

Copyright 2001 OCG

Experimental setup

Independent packet

The 4 channel packet transmitter

Experimental setup

The amplified link with three cascaded EDFA

 P_{ch} transmitted power per channel; P_{rx} received power per channel

Copyright 2001 OCG

- T_{off} and T_{on} are geometrically distributed random numbers
- T_{on} is the average number of consecutive slot ON
- T_{off} is the average number of consecutive slot OFF
- $T_{on}/(T_{off} + T_{on})$ is the average traffic load
- $T_{off} + T_{on}$ gives an indication of the traffic burstiness

- For each value of P_{ch}, set using the variable optical attenuator (VOA) after the transmitter, a BER vs. P_{rx} curve is obtained sweeping P_{rx} by mean of the VOA after the receiver filter
- Measuring BER with packet ON and OFF, we get a sensitivity penalty at a reference bit-error-rate set to 10⁻⁹
- At each penalty we relate the newly introduced parameter $Q_{\Delta G}$, in order to obtain the relationship between sensitivity penalty and $Q_{\Delta G curve}$

BER measurements

Correlating Penalty and $Q_{\Delta G}$

Rule of thumb: $Q_{\Delta G}$ should be greater than 18-20 dB in order to have a sufficiently low system impact.

$\mathbf{Q}_{\Delta G}$ traffic dependence: burstiness

$\mathbf{Q}_{\Delta G}$ traffic dependence: load

- We experimentally addressed the impact of bursty input optical signals on the gain fluctuation of EDFA amplifiers
- We introduced a new and easily measurable parameter that allow to quantify the effect
- We related this parameter to the system sensitivity penalty

Acknowledgments

- This work has been carried out in the framework of the RINGO project, a consortium of italian university coordinated by the Optical Communication Group of Politecnico di Torino, funded by MIUR (Italian Ministry for Education, University and Research)
- The author wish to thank:
 - CISCO Photonics Italy

- STMicroelectronics (formerly Italtel)
- Lucent Technology Italy Lucent Technologies Bell Labs Innovations

For any inquiry, feel free to contact: <u>gaudino@polito.it</u>