

DIGITAL SIGNAL PROCESSING TECHNIQUES FOR HIGH-SPEED OPTICAL COMMUNICATIONS LINKS

DARIO PILORI

PHD CANDIDATE - ELECTRICAL, ELECTRONIC AND COMMUNICATIONS ENGINEERING - XXXI CYCLE

FINAL PHD DEFENSE

ADVISORS: PROF. GABRIELLA BOSCO / PROF. ROBERTO GAUDINO

STRUCTURE OF THE TALK

Part I: Direct-Detection Systems

- Bi-directional PAM-4 architecture for intra-data-center links
- Self-coherent systems for data-center interconnections

- Part II: Coherent Systems
 - Probabilistic constellation shaping: basics over a pure AWGN channel
 - Interaction between PS and fiber non-linear effects: generation and compensation of non-linear phase noise

COLLABORATIONS

 Part of the work presented here has been done in collaboration with CISCO Photonics Italy S.r.l. and LINKS Foundation

MOTIVATION: LINE RATES INCREASE

Peter J. Winzer, David T. Neilson, Andrew R. Chraplyvy, "*Fiber-optic transmission and networking: the previous 20 and the next 20 years* [Invited]," Opt. Express **26**, 24190-24239 (2018);

4

PART I

DIRECT-DETECTION SYSTEMS

DATA-CENTER LINKS

INTRA-DC CONNECTIONS

A "SPATIAL MULTIPLEXING" PROPOSAL

REQUIREMENTS FOR FUTURE INTRA-DC LINKS

- Speed
- Cost
- Size
- Power consumption

400GBASE-FR8 STANDARD

- 50 Gbit/s per channel
- Two transceivers, duplex SMF cable
 - How to reduce power consumption?

PROPOSED ARCHITECTURE

OPTCOM

- Lasers are shared inside each transceiver (like MPO)
 - Duplex cable used simultaneously in both directions, like in PONs
- **Double** *per-laser* capacity
 - Unavoidable link-budget loss due to 3-dB splitters

D. Pilori et al., "*Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links*", 10 IEEE Photonics Journal 10.2, pp. 1-10 (2018)

MAIN ISSUE: BACK-REFLECTIONS

- Back-reflections cause coherent crosstalk
- PONs use completely different wavelength (in O- and C-bands)
- Proposal: *slight* detuning, staying in the same WDM channel

D. Pilori et al., "*Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links*", _{II} IEEE Photonics Journal 10.2, pp. 1-10 (2018)

- Back-reflection penalty as a function of laser frequency separation for 2-km PAM-4 links
- Demonstrate that a *small* separation is sufficient to keep penalty *low* (<0.5 dB) for "standard" reflections
 - For instance, legacy TIA-568 LC connectors have a maximum back-reflection of -26 dB

EXPERIMENTAL SETUP

OPTCOM

- 1550-nm transmission using DS fiber to emulate 1310-nm
- 53 GBaud or 28 GBaud PAM-4

D. Pilori et al., *"Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links"*, 13 IEEE Photonics Journal 10.2, pp. 1-10 (2018)

RECEIVER STRUCTURE AND DSP

D. Pilori et al., "*Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links*", 14 IEEE Photonics Journal 10.2, pp. 1-10 (2018)

SINGLE REFLECTION RESULTS - 28 GBAUD

- Rule of thumb: Δ**f**>**R**_s
- Feasible in the LAN-WDM grid (800-GHz spacing)

D. Pilori et al., "Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links", 15 IEEE Photonics Journal 10.2, pp. 1-10 (2018)

SINGLE REFLECTION RESULTS – 53 GBAUD

D. Pilori et al., "Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links", 16 IEEE Photonics Journal 10.2, pp. 1-10 (2018)

MULTIPLE REFLECTIONS

OPTCOM

D. Pilori et al., "Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links", IEEE Photonics Journal 10.2, pp. 1-10 (2018)

17

THREE REFLECTIONS RESULTS – 28 GBAUD

R is normalized to have the same reflected power at the receiver

- Multiple-reflection penalty is random
 - Worst-case over 100
 measurements
- Rule of thumb: $\Delta f > 2R_s$

CONCLUSIONS ON THIS ARCHITECTURE

- A bi-directional architecture can potentially double per-laser capacity over standard <u>duplex SMF cables</u>
 - There are still several issues to be solved: power budget due to 3-dB splitters, laser wavelength control, ...
- Back-reflection penalties can be *avoided* if lasers in one transceiver are *slightly* detuned
 - Rule of thumb: Δf>2R_s
 - Keeps same nominal channel in WDM grid

INTER-DC CONNECTIONS

COHERENT OR DIRECT DETECTION?

WHICH MODULATION FORMAT FOR DCI?

Main characteristics for this scenario

- Standard single-mode fiber (SSMF) up to 100km
- C-band (EDFAs required at TX and RX)
 - Dispersion must be compensated
- High spectral efficiency <u>not</u> required
- Low cost and power consumption

Coherent or direct detection?

SINGLE-SIDEBAND SELF-COHERENT TRANSMITTER

OPTCOM

D. Pilori and R. Gaudino, "Direct-Detection Single-Sideband Systems: Performance Comparison and Practical 22 Implementation Penalties" [invited], ICTON conference 2018, Bucharest (Romania)

SINGLE-SIDEBAND SELF-COHERENT RECEIVER

D. Pilori and R. Gaudino, "Direct-Detection Single-Sideband Systems: Performance Comparison and Practical Implementation Penalties" [invited], ICTON conference 2018, Bucharest (Romania)

SSB TRANSMISSION: PROS AND CONS

- 1. Direct detection \checkmark
- 2. Higher spectral efficiency \checkmark
- 3. Electronic dispersion compensation \checkmark
- 1. Complex transmitter structure X
- 2. High receiver analog bandwidth \mathbf{X}
- 3. Reduced OSNR sensitivity \mathbf{X}

24

DMT MODULATION: INTENSITY MODULATION OR SINGLE SIDE-BAND?

DISCRETE-MULTITONE MODULATION (DMT)

 Partial compensation of the frequency response of a dispersion-uncompensated IM/DD link

Source: T. Takahara et al., Proc. OFC 2014, M2I.1

SIMULATION SETUP

OPTCOM D. Pilori et al., "Comparing DMT Variants in Medium-Reach 100G Optically Amplified Systems", J. Lightwave Technol. 34.14, 3389-3399 (2016)

BACK-TO-BACK COMPARISON

CPTCOM D. Pilori et al., "Comparing DMT Variants in Medium-Reach 100G Optically Amplified Systems", 28 J. Lightwave Technol. 34.14, 3389-3399 (2016)

TOLERANCE TO CHROMATIC DISPERSION

SSB is practically

unaffected by CD

DSB/VSB: strong OSNR

penalty

VSB filter: SuperGaussian

OPTCOM D. Pilori et al., "Comparing DMT Variants in Medium-Reach 100G Optically Amplified Systems", 29 J. Lightwave Technol. 34.14, 3389-3399 (2016)

CONCLUSIONS ON INTRA-DC

- SSB self-coherent is a viable "hybrid" between direct detection and coherent
 - Advanced techniques like Kramers-Kronig are able to fully compensate for SSBI
- Excellent performance on ~80km dispersion-uncompensated links
 - IM/DD systems must use optical dispersion compensation, even with DMT and bit loading
 - Nevertheless, there are still several practical implementation issues that need to be solved

PART II

COHERENT SYSTEMS

AN INTRODUCTION

GENERIC COHERENT LONG-HAUL SYSTEM

Fiber Kerr effect

EQUIVALENT CHANNEL

- DSP point of view: equivalent channel
 - Using theoretical models, simulations or experiments DSP can be tested, and performance metrics obtained

SOFT PERFORMANCE METRICS

Linked to the performance of soft-decision FEC codes

PROBABILISTIC CONSTELLATION SHAPING

BASICS OVER AN AWGN CHANNEL

STANDARD QAM CONSTELLATIONS

 ~1.53 dB asymptotic gap to capacity

• Fixed data rates!

 Unless different FEC rates are used

PROBABILISTIC CONSTELLATION SHAPING

 The two goals can be achieved by transmitting QAM symbols with different probability

Fred Buchali, Fabian Steiner, Georg Böcherer, Laurent Schmalen, Patrick Schulte, and Wilfried Idler, "*Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration*," J. Lightwave Technol. 34, 1599-1609 (2016)

PROBABILISTIC SHAPING: PRACTICAL ISSUES

- 1. How to implement constellation shaping?
 - Implementable in hardware with low complexity
 - Must be combined with Forward Error Correction
- 2. Which probability distribution?
 - Potentially any distribution can be applied
 - AWGN channel: optimal distribution is Gaussian (infinite number of points...)

PROBABILITY AMPLITUDE SHAPING ARCHITECTURE

- Practical, capacity achieving combination of shaping and coding
- Distribution matcher (DM): random stream of bits to sequence of amplitudes A with desired distribution

G. Böcherer, F. Steiner and P. Schulte, "*Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation*," in IEEE Transactions on Communications, vol. 63, no. 12, pp. 4651-4665, Dec. 2015.

Standard QAM constellations:

Probabilistic shaping with PAS scheme and ideal DM:

$$\label{eq:AIR_PS} \begin{split} \text{AIR}_{\text{PS}} = \mathcal{H}(P) - (1-r)m \\ & \quad \\ \text{Entropy of PS} \\ & \quad \\ \text{constellation} \\ \end{split} \\ \text{FEC code rate} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split}$$

PTCOM J. Cho et al., "On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems," Opt. Express 26, 9784-9791 (2018)

MAXWELL-BOLTZMANN VS EXPONENTIAL

D. Pilori et al., "Comparison of Probabilistically Shaped 64QAM With Lower Cardinality Uniform Constellations in Long-Haul Optical Systems," J. Lightwave Technol. 36, 501-509 (2018)

AN EXPERIMENTAL COMPARISON

Constellation	Entropy (bit/symb)	FEC overhead	Distribution	Net data rate at 16 GBd
16-QAM	4		-	106.6 Gbit/s
PS-64-QAM	4.33	2004	Exponential	
32-QAM	5	20%	-	133.3 Gbit/s
PS-64-QAM	5.17		Exponential	

D. Pilori et al., "*Comparison of Probabilistically Shaped 64QAM With Lower Cardinality Uniform Constellations in Long-Haul Optical Systems*," J. Lightwave Technol. 36, 501-509 (2018)

EXPERIMENTAL SETUP

D. Pilori et al., "Comparison of Probabilistically Shaped 64QAM With Lower Cardinality Uniform Constellations in Long-Haul Optical Systems," J. Lightwave Technol. 36, 501-509 (2018)

PHASE RECOVERY STRATEGIES

- 1. Ideal (i.e. genie-aided) phase noise removal (IPNR)
- 2. Blind Phase Search (BPS) + Maximum Likelihood (ML) with pilot tones for phase unwrapping

- M. Magarini et al., IEEE PTL, vol. 24, no. 9, pp. 739–741, May 2012.
- X. Zhou, IEEE PTL, vol. 22, no. 14, pp. 1051–1053, July 2010.

OPTICAL BACK-TO-BACK RESULTS

Solid lines: AWGN (theory)

OPTCOM

Markers: Experimental measurements

D. Pilori et al., "*Comparison of Probabilistically Shaped 64QAM With Lower Cardinality Uniform Constellations in Long-Haul Optical Systems*," J. Lightwave Technol. 36, 501-509 (2018)

PSCF PROPAGATION RESULTS

- Markers: BPS+ML
- *Solid lines*: IPNR

COPTCOM

SUMMARY: PS CONSTELLATION OVER AN AWGN CHANNEL

- After propagation over PSCF, PS-64-QAM keeps the same back-to-back sensitivity gain over 16-QAM and 32-QAM
 - Directly translated to a reach increase
- In this scenario, Probabilistic Shaping does not change the impact of fiber Kerr non-linearities

PROBABILISTIC SHAPING AND FIBER NON-LINEARITIES

NON-LINEAR PHASE NOISE AND ITS IMPACT

CONSTELLATION-SHAPE DEPENDENT NLI

h=0 and k=m -> one of the largest contributor of the sum

$$\Delta a_{0_p} = ja_0 \left(2\gamma \sum_m |b_m|^2 X_{0,m,m} \right)$$

<u>Phase noise</u> component, with variance

$$\Delta \theta^2 = 4\gamma^2 \left(\left\langle |b_0|^4 \right\rangle - \left\langle |b_0|^2 \right\rangle^2 \right) \sum_m X_{0,m,m}^2$$

R. Dar et al., "*Properties of nonlinear noise in long, dispersionuncompensated fiber links*," Opt. Express 21, 25685-25699 (2013)

PROPERTIES OF NON-LINEAR PHASE NOISE

 Modulation format dependence:

$$\langle |b_0|^4 \rangle - \langle |b_0|^2 \rangle^2 = \begin{cases} 0 & \text{QPSK} & \text{B} \\ 0.32\sigma_b^4 & 16\text{-QAM} & \text{P} \\ 0.381\sigma_b^4 & 64\text{-QAM} & \text{I} \\ \sigma_b^4 & \text{Gaussian} & \text{G} \end{cases}$$

- Auto-correlation function of phase noise:
 - Simple approximation:

$$R_{\theta}(l) \approx \Delta \theta^2 \left[1 - \frac{|l|T}{|\beta_2 \Omega|L} \right]^+$$

Distance, dispersion and symbol rate *enlarge* the auto-correlation

R. Dar et al., "*Properties of nonlinear noise in long, dispersion-uncompensated fiber links*," Opt. 50 Express 21, 25685-25699 (2013)

FIRST EXPERIMENT REVISITED

 Over PSCF we found no difference in NLI between the two constellations

 Non-linear phase noise (NLPN) is almost fully compensated for by the CPE

EXAMPLE I: LOW DISPERSION FIBER (NZDSF)

EXAMPLE II: LOW SYMBOL RATE

15 x 32 GBaud, 100-km SMF, simulations

D. Pilori et al., "*Residual non-linear phase noise in probabilistically-shaped 64-QAM optical links*", 53 OFC conference 2018, San Diego CA, M3C.6

- As predicted by NLI models, PS constellations generate more non-linear phase noise
 - If its memory (autocorrelation) is large (e.g. PSCF propagation), the CPE at the receiver is able to compensate for it
- In some situations (e.g. low dispersion fibers, low symbol rates, ...) the CPE cannot fully compensate for NLPN
 - Significant penalties can be expected

Several works were devoted to this topic

In this thesis are proposed two techniques:

- 1. Modified soft-decoding metric at the receiver
- 2. Geometrical constellation shaping

MODIFIED SOFT-DECODING STRATEGY

Channel model:

$$y[k] = a[k]e^{j\phi[k]} + n_{ASE}[k] + n_{NLI}[k]$$

 Assuming *memoryless* phase noise, channel probability can be expressed as:

$$p(y|a) \approx \sqrt{\frac{\kappa_{\phi}}{8\pi^3}} \frac{e^{-\kappa_{\phi}}}{\sigma_n^2} \exp\left(-\frac{|y|^2 + |a|^2}{2\sigma_n^2} + \left|\frac{ya^*}{\sigma_n^2} + \kappa_{\phi}\right|\right)$$

Mitigation of *residual* (i.e. post-CPE) phase noise

OPTCOM F. Kayhan and G. Montorsi, IEEE Trans. Wireless Commun. **13**(5), 2874-2883 (2014) 56

BENEFIT OF MODIFIED STRATEGY

Experiment over low-dispersion fibers previously presented

- Significant reach gain on PS-64-QAM
- Smaller gain over standard QAM constellations

D. Pilori et al., "Low-complexity non-linear phase noise mitigation using a modified soft-decoding 57 strategy", OFC conference 2019, San Diego CA, M1I.2

CONSTELLATION OPTIMIZATION

- Simulated annealing algorithm
 - Optimization metric: modified soft-decoding strategy
- A 32-point constellation (GS 32-QAM) was generated

D. Pilori et al., "Non-linear phase noise mitigation over systems using constellation shaping", submitted to J. Lightw. Technol.

EXPERIMENTAL RESULTS

- 31 x 16 GBaud, 80-km SMF, experiment
- All constellation have the same spectral efficiency
 - NGMI threshold = 0.86
- No NLI penalty with GS 32-QAM
 - PS 64-QAM is still better

D. Pilori et al., "Non-linear phase noise mitigation over systems using constellation shaping", submitted to J. Lightw. Technol.

CONCLUSIONS

- Constellation shaping is a powerful technique to allow high data-rate flexibility
- However, it inevitably triggers more non-linear effects
 Mostly, as non-linear phase noise
- In "standard" conditions (high dispersion, high symbol rates) receiver CPE compensates for it
 - At least for PS-64-QAM and reach ~hundreds of km
- Specific focus on NLPN mitigation must be taken into account in this cases
 - Or don't use shaping ^(C)

LIST OF JOURNAL PUBLICATIONS

- **1. Dario Pilori**, Antonino Nespola, Fabrizio Forghieri and Gabriella Bosco. "*Non-Linear Phase Noise Mitigation over Systems using Constellation Shaping*". Submitted to: Journal of Lightwave Technology
- Dario Pilori, Luca Bertignono, Antonino Nespola, Fabrizio Forghieri, Marco Mazzini, and Roberto Gaudino. "Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links". In: IEEE Photonics Journal 10.2 (Apr. 2018), pp. 1–10.
- **3. Dario Pilori**, Luca Bertignono, Antonino Nespola, Fabrizio Forghieri, and Gabriella Bosco. "*Comparison of Probabilistically Shaped 64QAM With Lower Cardinality Uniform Constellations in Long-Haul Optical Systems*". In: Journal of Lightwave Technology 36.2 (Jan. 2018), pp. 501–509. [invited from top-scoring OFC 2017 contribution]
- **4. Dario Pilori**, Chris Fludger, and Roberto Gaudino. "*Comparing DMT Variants in Medium-Reach 100G Optically Amplified Systems*". In: Journal of Lightwave Technology 34.14 (July 2016), pp. 3389–3399.
- 5. M. Cantono, A. Ferrari, **D. Pilori**, E. Virgillito, J. L. Augé, and V. Curri. "*Physical Layer Performance of Multi-Band Optical Line Systems Using Raman Amplification*". In: Journal of Optical Communications and Networking 11.1 (Jan. 2019), A103. [invited from top-scoring OFC 2018 contribution]
- 6. Mattia Cantono, **Dario Pilori**, Alessio Ferrari, Clara Catanese, Jordane Thouras, Jean-Luc Augé, and Vittorio Curri. "On the Interplay of Nonlinear Interference Generation With Stimulated Raman Scattering for QoT Estimation". In: Journal of Lightwave Technology 36.15 (Aug. 2018), pp. 3131–3141.
- Seyed Sadra Kashef, Paeiz Azmi, Gabriella Bosco, Mehdi D. Matinfar, and Dario Pilori. "Non-Gaussian statistics of CO-OFDM signals after non-linear optical fibre transmission". In: IET Optoelectronics 12.3 (June 2018), pp. 150–155.

LIST OF PRESENTATIONS

- 1. Dario Pilori, Antonino Nespola, Pierluigi Poggiolini, Fabrizio Forghieri, and Gabriella Bosco. "*Low-Complexity Non-Linear Phase Noise Mitigation using a Modified Soft-Decoding Strategy*". Optical Fiber Communication Conference (OFC), San Diego CA (USA), paper M11.2, March 2019.
- 2. Dario Pilori. *"Fiber Nonlinearities: A Communications Engineer Perspective"*. DEIB, Politecnico di Milano, seminar. October 2018.
- 3. Dario Pilori and Roberto Gaudino. "*Direct-Detection Single-Sideband Systems: Performance Comparison and Practical Implementation Penalties*". International Conference on Transparent Optical Networks (ICTON), Bucharest (Romania), July 2018.
- 4. Dario Pilori. "Impact of Fiber Non-Linearities on Probabilistic Shaping in Long-Haul Optical Systems". Symposium on Challenges to Achieving Capacity in Nonlinear Optical Networks, Grasmere (UK). June 2018.
- 5. Dario Pilori, F. Forghieri, and Gabriella Bosco. "*Residual Non-Linear Phase Noise in Probabilistically Shaped 64-QAM Optical Links*". Optical Fiber Communication Conference (OFC), San Diego CA (USA), March 2018.
- 6. Dario Pilori. "*The Advantage of Probabilistic Constellation Shaping on Long-Haul Optical Systems*". In Institute of Photonics and Quantum Electronics (IPQ) Karlsruhe Institute of Technology (KIT) weekly seminar, Karlsruhe (Germany), October 2017.
- 7. Dario Pilori, Mattia Cantono, Andrea Carena, and Vittorio Curri. *"FFSS: The fast fiber simulator software"*. International Conference on Transparent Optical Networks (ICTON), Girona (Spain), July 2017.
- 8. Dario Pilori, Fabrizio Forghieri, and Gabriella Bosco. "*Maximization of the Achievable Mutual Information using Probabilistically Shaped Squared-QAM Constellations*". Optical Fiber Communication Conference (OFC), Los Angeles CA (USA), March 2017. [poster]
- 9. L. Bertignono, D. Pilori, A. Nespola, F. Forghieri, and G. Bosco. "*Experimental Comparison of PM-16QAM and PM-32QAM with Probabilistically Shaped PM-64QAM*". Optical Fiber Communication Conference (OFC), Los Angeles CA (USA), March 2017. [top-scoring paper]

DARIO.PILORI@POLITO.IT

THANK YOU

BACKUP SLIDES

SPEED OF INTRA-DC INTERFACES

FORM FACTORS

COHERENT OR DIRECT DETECTION?

SOPTCOM

	PAM-4 (direct detection)	16-QAM (coherent detection)
Spectral efficiency	$2R_s$	R_s
TX architecture	DAC LASER IM	2xDAC IQM IQM 2xDAC
RX architecture	PD ADC	DP 4xADC CohRX LASER
Dispersion compensation	Optical	Electrical

M. Morsy-Osman and D.V. Plant, Proc. OFC 2018, W4E.1

PERFORMANCE COMPARISON: EXP VS MB

BACK-TO-BACK RESULTS

Penalty is ~0.9 dB for standard QAM and ~1.05 dB for PS 64QAM

COMPARISON WITH NLI MODELS

64-APSK CONSTELLATION

CHOICE OF SYMBOL RATE

- To carry out a fair comparison we kept *fixed*:
 - Total optical bandwidth
 - Relative channel spacing
 - Total bit rate is also constant
- Same laser phase noise: 2.5 kHz / GBaud
- The reference single-channel case is:
 - R_s =32GBaud, Δf =50GHz, N_{ch} =15 channels, ρ =15%
- We reduced symbol rate to 16, 8 and 4 GBaud

