

A novel model of Cross Phase Modulation in WDM optical systems

A. Carena^{1,2}, P. Cobetto Ghiggia¹, V. Curri^{1,2}

¹Politecnico di Torino, Optical Communications Group, C.so Duca degli Abruzzi 24, 10129 Torino, Italy <u>www.optcom.polito.it</u> ² Alps Telecommunications Software Srl, via Pier Carlo Boggio 61, 10138 Torino, Italy <u>www.alps-telsoft.com</u> <u>info@alps-telsoft.com</u>

Abstract

We propose a novel model for the evaluation of intensity and phase distortion due to XPM in WDM optical systems. The XPM effect is modeled as a perturbing term multiplying the undistorted signal.

Validation

- WDM system: 9 channels @ 10 Gbit/s, ∆f=100 GHz
- 100 km of NZDSF fiber (β₂=-5.74 ps²/km, γ=1.84 W⁻¹km⁻¹)
- Transmitted power: 0 dBm per channel

Motivation

- XPM is the main performance limiting phenomenon for long-haul high-capacity WDM systems
- Simulation of Nonlinear Schroedinger equation based on the Split-Step method is not a viable approach: highly time consuming, allows only to study few realizations and does not separate different effects
- Previously proposed models, based on pump and probe approach, can not be extended to the practical case of a modulated probe

<u>Math</u>

Starting point: the Nonlinear Schroedinger equation

The innovative assumption: XPM perturbation is a multiplicative factor

 $a_{i0}(z,t)$ signal propagated in single channel condition $\rho(z,t)$ XPM multiplicative factor

Method

- Evaluation of $a_{i0}(L,t)$ using standard Split-Step method
 - Single channel simulation: very fast
- Evaluation of $\rho(z,t)$ by mean of the new derived equation
- Calculation of a(L,t)
- Eventually: Monte-Carlo study over thousands of realizations in order to statistically characterize the XPM perturbation