

(DpfSim 3.0

Hybrid Raman/Erbium-Doped Fiber Amplifiers: a Promising Technology for Multi-Terabit Systems Dr. Vittorio Curri vcurri@artis-software.com

www.artis-software.com

- Introduction to the Raman Amplification Simple Model Rayleigh back-scattering Noise-Figure Definition Non-linear weight RA vs. EDFA
 - Hybrid Raman/Erbium-Doped Fiber Amplifiers

Hypotheses

- Single-pump
- Co-propagating, Counter-propagating and bidirectional pump
- Full spectral analysis
- Undepleted pump assumption
- Rayleigh back-scattering is not considered
 - No back-scattered components of the signal
 - No back-scattered components of the ASE noise

Power evolution along the fiber-span

$$G_{RA}(z,f) = \frac{P(z,f)}{P(0,f)} = \exp\left\{\int_{0}^{z} \left[C_{R}(f)P_{pump}(\zeta) - \alpha_{S}(f)\right]d\zeta\right\}$$
The On-off Gain

$$G_{on-off}(f) = \exp\left\{C_{R}(f)P_{pump,0}\frac{1 - \exp\left[-\alpha_{p}L_{span}\right]}{\alpha_{p}}\right\}$$

The ASE spectral density
Along the fiber-span ...

$$S_{ASE}(f, z) = hfC_R(f)G_{RA}(z, f)\int_0^z P_{pump}(\zeta)G_{RA}^{-1}(\zeta, f) d\zeta$$
... at the output of the fiber-span

$$S_{ASE}(f) = hfC_R(f)G_{on-off}(z,f)\exp\left\{-\alpha_S L_{span}\right\}\int_{0}^{L_{span}} P_{pump}(\zeta)G_{RA}^{-1}(\zeta,f)\,\mathrm{d}\zeta$$

Raman Amplifier: the gain profile

12

Raman Amplifier: Rayleigh Scattering

159

Importance of considering Rayleigh Scattering

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 1, JANUARY 1998

Rayleigh Scattering Limitations in Distributed Raman Pre-Amplifiers

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni

Fig. 2. Measured (solid circles) and calculated (solid lines) optical SNR in a 0.2-nm bandwidth against pump power at a wavelength of 1453 nm for (a) SCF and (b) DSF. Fiber parameters for the numerical simulation are shown as inserts.

A high-power 1453-nm pump source is capable of launching up to 1.1 W backward in the transmission fiber via a wavelength selective coupler. The optical SNR including Rayleigh scattering of ASE and signal, was measured in a bandwidth of 0.2 nm at the output of the Raman pre-amplifier. The SNR is shown as a function of the launched pump power for SCF and DSF in Fig. 2(a) and (b), respectively. Notice that an optical spectrum analyzer, which is used for this measurement, does not distinguish between signal and its double reflected component. Local maximums of the optical SNR are measured to be \geq 13.6 dB (13.6 dB measured at the maximum pump power of 1100 mW) for the SCF and 12.6 dB at 550 mW for the DSF.

Hansen *et al.* showed that only 2 components derived from Rayleigh scattering have a strong impact on the system performance.

- Single co- and counter-propagating pump
- Realistic shape (e.g. user-defined) for the Raman profile: no Lorentzian fitting
- ASE noise with frequency dependent shape
- Rayleigh back-scattering of noise: single- and double-scattered noise components are fully considered
- Inclusion of Raman amplification during SPT simulation for fast system optimization
- Raman amplification is simulated step-by-step to fully take into account the effect of distributed signal growth

Importance of back-scattering: example

- Fiber: SMF or DS
- Distance: 50 km
- Receiver: sensitivity = -30 dBm
- Rayleigh Scattering: R = -30 dB
- Laser source power: -23 dBm
- Raman pump direction: counter-prop
- Raman pump power: 0.1 to 2 W

	$-\equiv$ Run definition \equiv \boxtimes						
		ppump_mW					
	Run 1	100]					
	Run 2	300					
	Run 3	400					
	Run 4	500					
	Run 5	600					
	Run 6	700					
	Run 7	800					
	Run 8	900					
	Run 9	1100					
	Run 10	1300					
	Run 11	1500					
Simulation variables	Run 12	1700					
Variables defined	Run 13	1900					
Used Name Value	Run 14	2000					
NO LEPAN 50 NO PITX dBm -2.3							
Yes ppump_mW O	õ		port				
۶ <u>ــــــــــــــــــــــــــــــــــــ</u>							
Variable name Default value							
Used in Run							
Yes Vo							
Add Besove Undate							

SMF: Q vs. pump power

DS: Q vs. pump power

Noise-Figure: definition

Desurvire's^(P) definition

$$NF(f) = \frac{1 + 2S_{noise}(f)}{G(f)} = \frac{1 + 2n_{sp}(f)[G(f) - 1]}{G(f)}$$

(*)Emmanuel Desurvire, Erbium-Doped Fiber Amlifiers, Principles and applications, Wiley-Interscience, New York, 1994.

It is a rigorous definition, but it does not allow a direct comparison with EDFA's, because it also includes the fiber loss

Raman Amplifier: noise figure

$$SNR_{RA} - SNR_{EDFA} = NF_{EDFA} - NF_{RA}$$

EDFA vs. RA: an example

- Fiber: DS
- Distance: 50 to 180 km
- Receiver: sensitivity = -30 dBm
- Rayleigh Scattering: R = -30 dB
- Laser-source power: -7 dBm
- Pump direction: counter-prop.
- $G_{on-off} = G_{EDFA} =$ fiber loss

EDFA vs. RA: an example

Non-Linear Impact

EDFA- and RA-based system have a different power distribution along the fiber-span. With the same P_{in}/P_{out} behavior RA-based

systems have an higher *effective* power-level

In RA-based systems a lower power-level must be used to have a comparable effect of non-linearities

Non-Linear Impact: an example

It is the overall non-linear phase-shift the signal experiences along the system

$$K_{NL}^{EDFA} = \gamma L_{eff}^{EDFA} P_{in} = \gamma P_{in} \int_{0}^{L_{span}} \exp\left\{-\alpha_{s} z\right\} dz \approx \frac{\gamma P_{in}}{\alpha_{s}}$$

$$K_{NL}^{RA} = \gamma P_{in} \int_{0}^{L_{span}} \exp\left\{-\alpha_{S} z\right\} G_{RA}(z) dz = \gamma P_{in} L_{eff}^{RA} > K_{NL}^{EDFA}$$

In RA-based systems transmitted power must be reduced of the factor Left to have the same non-linear impact, therefore, to allow a direct comparison with EDFA's an effective spontaneous emission factor can be defined

Effective noise-figure for RA

Signal-To-Noise Ratio at the output of the system

$$SNR = \frac{P_{IN}}{hfB_n} \cdot \frac{\exp\left\{-\alpha_s \frac{L_{TOT}}{N_{span}}\right\}}{N_{span}\left(n_{eq}^{RA} + \frac{n_{eq}^{EDFA}}{G_{on-off}}\right)}$$

$$n_{eq} = \frac{n_{sp}(G-1)}{G}$$

Equivalent Spontaneous Emission Factor

1 SNR fixed

Given a required SNR value, the system is optimized in order to minimized the non-linear weight K_{NL} versus the number of spans N_{span}

2 K_{NL} fixed

given a non-linear weight K_{NL} the SNR is maximized versus the number of spans N_{span}

3 N_{span} fixed

given the distance between the stations ($L_{span} = L_{TOT}/N_{span}$), the system is optimized to maximize the SNR for each K_{NL}

Medium-Haul DWDM System

- Total length: $L_{TOT} = 1500$ km
- Number of channels: 32
- Channel spacing: 50 GHz
- Signal loss: $\alpha_s = 0.2 \text{ dB/km} @ 1550 \text{ nm}$
- Pump loss: $\alpha_{p} = 0.3 \text{ dB/km} @ 1450 \text{ nm}$
- *D* =5.7 ps/nm/km
- *D'* = 0.037 ps/nm²/km
- 100% dispersion compensation
- Ideal Gain Flattening Filter
- Passive components loss: $T_F = 10 \text{ dB}$

	Unit	Knl = 0.2	Knl = 0.2	Knl = 0.5	Knl = 0.5			
		EDFA 30%	EDFA 100%	EDFA 30%	EDFA 100%			
Nspan		11	19	9	13			
Lspan	[km]	136.364	78.947	166.667	115.385			
Pch	[dBm]	-3.606	-5.308	1.503	0.224			
Ppump	[dBm]	28.274	-	28.928	-			
GEDFA	[dB]	11.2	25.8	13	33.1			
GRAMAN	[dB]	26.1	-	30.3	-			

Simulation: Q values

HFA: Use Case (NO lumped loss)

Saturation

• It occurs when the transfer of pump-power is so strong to deplete the pump-power itself. This phenomenon is more important in forward-pumped RA

Multi-pump Raman Amplifier

• If the RA bandwidth wants to be enlarged a multipump configuration must be used.

Multi-pump Raman amplifier

- Pump definition:
 - Frequency and power for each pump
 - ASCII file containing the measured power spectrum of the pumps
- Saturation characteristics and interactions between pumps
- Interference caused by the single- and doublescattered signal components

