

OBSERVING THE INTERACTION OF PMD WITH GENERATION OF NLI IN UNCOMPENSATED AMPLIFIED OPTICAL LINKS

MATTIA CANTONO, DARIO PILORI, ALESSIO FERRARI, ANDREA CARENA, <u>VITTORIO CURRI</u>

OPTCOM GROUP – DIPARTIMENTO DI ELETTRONICA E TELECOMUNICAZIONI

POLITECNICO DI TORINO – ITALY – CURRI@POLITO.IT

Is NLI generation the fiber propagation limiting impairment also for very-large band transmission beyond the C-band?

What is the proper wave equation to be considered as governing propagation of dual-polarization carrier-less modulation formats relying on coherent&equalized receivers?

THE MANAKOV EQUATION

- Propagation of PM-xQAM in the fiber is typically analyzed solving the Manakov Equation (ME)
- ME is the **polarization-averaged** fiber wave equation
- The ME was originally developed to study solitons

On the theory of two-dimensional stationary self-focusing of electromagnetic waves S. V. Manakov Institute of Nuclear Physics, Siberian Division, USSR Academy of Sciences (Submitted March 2, 1973) Zh. Eksp. Teor. Fiz. 65, 505–516 (August 1973) Sov. PhysJETP, Vol. 38, No. 2, February 1974	2674 Pulse Propagation in an Elliptically Birefringent Kerr Medium CURTIS R. MENYUK, SENIOR MEMBER, IEEE	28 DOURNAL OF LIGHTWAVE TECHNOLOGY, VOL 10, NO. 1, JANUARY 1992 POlarization Multiplexing with Solitons Stephen G. Evangelides Jr., <i>Member, IEEE</i> , Linn F. Mollenauer, <i>Member, IEEE</i> , James P. Gordon, <i>Senior Member, IEEE</i> , and Neal S. Bergano, <i>Senior Member, IEEE</i>
 ME+PMD : the Manakov-PMD equation (MPE) ME and MPE hold only over narrow bandwidths ME and MPE hold only over narrow bandwidths 		

- The fiber is affected by random birefringence inducing PMD
- ME and MPE are limited by the fiber coherence bandwidth:

$$\mathsf{B}_{\mathsf{c}} \cong \sqrt{3/(4\pi^2 \cdot PMD^2 \cdot L_{eff})}^*$$

- **B**_c \cong **500** GHz in modern fibers
- If the exploited B exceeds B_C
 - Coupled NLSE including random birefringece as fiber wave equation
 - Monte Carlo analyses to verify the PMD effect

- POLITECNICO DI TORINO
- State-of-the art is polarization-division-multiplexed multilevel modulation formats with DSP coherent receivers propagating on uncompensated links
- Propagation impairments are dominated by the NLI accumulation
- After the Rx equalizer and CPE, NLI is well approximated by four uncorrelated Gaussian random processes: in-phase and quadrature on two orthogonal polarization states
- Several models for the NLI estimation have been developed starting from the ME, so they in principle hold only over B_c

- NLI generation has been observed* up to 7 THz of bandwidth occupation for ASE noise channels
 - Good agreement with models predicting log-scaling of NLI with the transmission bandwidth
 - Indeed, it was predictable, since ME holds for any bandwidth in case of propagation of depolarized Gaussian noise
- What happens to NLI when loading spectrum with modulated channels?
- So, on which wave equation we have to rely on?

* G. Saavedra et al., "Experimental Investigation of...", OFC 2017, paper W1G.1
 * G. Saavedra et al., "Experimental Analysis of Nonlinear Impairments...," JLT, Oct. 2017

Required investigations

- Modulated channels
- Monte Carlo analyses varying PMD realizations
- No recirculating loop
- Experiments are really challenging
- Split-step simulations can be feasible using parallel computing on multicore CPUs and exploiting GPUs

- Split-step Fourier method for
 - Coupled nonlinear Shroedinger equation jointly solved with
 - Waveplate model to emulating random birefringence and induced PMD
 - Machine-tailored Matlab implementation

- Step size is the shortest
 between max NL phase-shift
 and waveplate step
- Parallel computing and GPU

THE SIMULATIVE ANALYSIS

- PM-QPSK or PM-16QAM channels at
 32 Gbaud
- Δf = 50 GHz and N_{ch} up to 41 ch
- Link: 20x100 km of SSMF with EDFA

Simulations

- FF.SS. solving the **ME**
- FF.SS. solving the CNLSE with random birefringence
 - PMD = 0.05 ps/ \sqrt{km} and 1 ps/ \sqrt{km}
 - Monte Carlo analyses on 20
 - different realizations

SOPTCOM

THE OBSERVED INTERFERENCE

No relevant phase noise

 Gaussian-distributed disturbance

 20 Monte Carlo runs on PMD are sufficient to obtain a good estimation

PM-QPSK

PM-16QAM

paper #W1G.4 – curri@polito.it

Eye diagrams after PM-QPSK propagation over L_{eff}, SSMF, 20000 symbols average window

Ideal

PMD only

CD+PMD

OPTCOM

paper #W1G.4 – curri@polito.it

PM-QPSK

PM-16QAM

PM-QPSK

PM-16QAM

paper #W1G.4 – curri@polito.it

COMMENTS AND CONCLUSIONS

- When propagating multilevel modulation formats dominant impairment is ASE+NLI, also when considering random birefringence and far exceeding the fiber coherence bandwidth
- Statistical variations with respect different realizations of random birefringence are practically negligible
- Results obtained integrating **ME and CNLSE+WM** are practically **superimposed**
- The only **effect of PMD is a minor speeding-up in Gaussian-***ization* of signals: no relevant effect
- ME can be used to study propagation of multilevel modulation formats also far beyond the theoretical validity bandwidth for ME itself
- Consequently, **models derived** from the ME hold also at **large bandwidth**
- Gain/loss variations with space/frequency must be included, starting from the **interaction NLI-SRS: GGN***
- Presentation will be available at www.optcom.polito.it/talks

*M. Cantono et al, *Modeling the impact of SRS on NLI generation in commercial equipment: an experimental investigation*, OFC 2018, M1D2.1